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ABSTRACT  

Cataracts remain a prevalent cause of global blindness, 

emphasizing the urgent need for timely and accurate diagnostic 

solutions. This study introduces an innovative automated cataract 

detection method using fundus images, employing three distinct 

convolutional neural network architectures: MobileNetV2, 

EfficientNetB0, and ResNet50. Through transfer learning, these 

types of models were developed using a dataset containing both 

cataract and non-cataract fundus images. The outcomes show 

how successful the suggested models were in precisely classifying 

fundus images, with notable performance indicators including F1-

score, recall, accuracy, and precision. The MobileNetV2-based 

model achieved 98% accuracy, EfficientNetB0 attained 68% 

accuracy, while the ResNet50 model, enhanced with additional 

dense layers, attained 69% accuracy. Furthermore, 

comprehensive evaluation including classification reports and 

confusion matrices validates the robustness and generalization 

capabilities of the models, confirmed through cross-validation on 

independent test sets. This convolutional neural network-based 

approach holds promise for scalable, cost-effective automated 

cataract detection in clinical settings, with the potential for 

further advancements in model interpretability and dataset 

diversification to enhance its applicability in diverse populations. 

Keywords:  

Cataracts, blindness, diagnostic solutions, fundus images, 

convolutional neural network, confusion matrices, detection. 

 

1. INTRODUCTION 

Cataracts represent a significant global health concern, contributing substantially to blindness 

worldwide. Detecting cataracts early is crucial for effective intervention and prevention of vision 

loss. This study introduces an innovative technique for automated cataract detection utilizing 

fundus images, employing advanced intense learning models: MobileNetV2, EfficientNetB0, and 

ResNet50. Accurate and effective diagnosis methods are desperately needed as the frequency of 

cataracts rises in order to expedite treatment and enhance patient outcomes. 

Cataracts, marked by a clouding of the lens of the eye, obstruct the passage of light to the retina, 

leading to impaired vision. While cataracts typically progress slowly and may not initially cause 

significant vision problems, they can eventually result in blindness if left untreated, particularly in 

individuals over 40 years old. Early detection of cataracts is essential for timely intervention and 

reducing the risk of irreversible vision loss, underscoring the importance of automated screening 

methods. 

Recent advancements in artificial intelligence have opened up new possibilities for automating 

cataract detection, offering a promising solution for scalable and cost-effective screening 

programs. Fundus images, which provide detailed views of the eye's interior, are particularly well-

suited for this purpose due to their accessibility and diagnostic value. However, existing 
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automated detection systems often face challenges such as suboptimal accuracy and high 

computational complexity, highlighting the need for improved detection algorithms. 

In this work, we provide a novel method for cataract identification based on deep-learning models 

designed especially for fundus image analysis. By leveraging the capabilities of MobileNetV2, 

EfficientNetB0, and ResNet50, we aim to enhance detection accuracy while minimizing 

computational overhead. Through rigorous investigation and evaluation, the effectiveness of 

proposed models have demonstrated effectiveness in accurately classifying fundus images and 

identifying cataracts with high precision and recall. 

Our contributions include the construction of sophisticated deep-learning algorithms for cataract 

detection and the establishment of an extensive dataset of fundus images. By harnessing the power 

of innovative technology, we seek to enhance cataract screening's effectiveness and accessibility, 

eventually leading to better global outcomes for eye health. 

The subsequent sections of this paper provide detailed descriptions of our suggested deep learning 

architectures and an overview of relevant field research, describe the experimental setup and 

methodology, present the experimental results and analysis, and conclude with consequences and 

future research directions. Through our efforts, we aim to address the critical need for accurate and 

efficient diagnostic solutions for cataracts, ultimately enhancing patient care and reducing the 

global burden of vision impairment. 

 

2. LITERATURE REVIEW: 

V Harini, V Bhanumathi's [4] study proposes a cost-effective auxiliary diagnosis system 

leveraging fundus image analysis for grading and classification of cataracts. 

Preprocessing techniques, such as contrast improvement and image resampling, and elimination of 

noise, are employed to enhance image quality and facilitate dataset manipulation. A mean filter is 

utilized for Gaussian noise reduction, considering the high-quality nature of fundus images 

captured by fundus cameras. 

Wavelet decomposition, chosen for its simultaneous time and frequency analysis capabilities, 

decomposes fundus images into high and low-frequency components, enabling better distinction 

between vessels and background. The Haar wavelet transform is selected for its ease of 

implementation, particularly in distinguishing high-frequency components indicative of vessel 

structures. 

In order to distinguish edges, clever edge detection is used after preprocessing, and then it is 

enlarged for better visibility. Higher levels of cataract severity are suggested by fewer components 

in the edge-detected image. The number of connected components in the image serves as an 

indicator of cataract severity. 

The study presents a comprehensive methodology for automated grading and classification of 

cataracts, integrating preprocessing, splinter decomposition, and edge detection techniques. 

MATLAB is employed for implementation, with various cataract grades tested to evaluate system 

performance. 

Linglin Zhang et al. [5] endeavour to explore the effectiveness and efficiency of employing Deep 

Convolutional Neural Nets (DCNNs) for automated cataract classification and identification. 

Additionally, it visualizes feature maps available at the pool5 layer, offering insights into the 

semantic meaning of extracted features, thereby explaining the depiction of features by DCNNs. 

Many population-based clinical retinal fundus image datasets, including up to 5620 pictures, are 

used to thoroughly validate the suggested DCNN-based classification approach. The study comes 

to two important conclusions: firstly, the method effectively overcomes challenges posed by local 

uneven illumination and eye reflections, improving the accuracy of DCNN classification. 

Secondly, as the sample size increases, the DCNN classification accuracies improve and exhibit 

more stable fluctuations. Notably, the proposed method achieves high accuracies of 93.52% and 

86.69% for cataract detection and grading tasks, respectively, outperforming contemporary state-
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of-the-art approaches. This underscores the significance of addressing the challenges associated 

with cataract detection and grading, particularly in leveraging advanced techniques like DCNNs to 

improve accuracy and efficiency in automated systems. 

Juyel Rana, Syed Md. Galib [6] study proposes a methodology centered on developing a 

smartphone application for self-screening cataract detection. The lack of ophthalmologists and 

specialized equipment in underdeveloped nations like Bangladesh makes it difficult to diagnose 

and cure cataracts promptly. To address these issues, researchers have explored automated 

smartphone-based cataract detection techniques, offering a convenient and accessible solution for 

early screening. 

Leveraging the ubiquity of smartphones with well-focused front cameras, the application allows 

individuals to perform self-assessment anywhere, anytime. By utilizing advanced features of 

Android Studio, SDK, NDK, and OpenCV, the application facilitates real-time image processing 

and analysis. 

The proposed model involves launching the application, which activates the front camera and 

initiates face and eye detection using OpenCV. Subsequently, the application identifies and 

isolates the pupils using the Cascade Classifier, storing the pupil images for further analysis. A 

pseudo-code algorithm outlines the cataract detection process, involving color determination of 

the pupils and classification into various stages based on color matching with an existing database. 

Smartphone-based solutions offer promising avenues for early intervention and improved 

healthcare access, potentially revolutionizing cataract screening practices. 

Meimei Yang et al. [2] study suggest using a neural network classifier based on retinal image 

classification for automated cataract detection, aiming to enhance diagnostic efficiency and 

alleviate the physical and economic burdens on patients and society. 

Previous studies have highlighted the significance of preprocessing, classifier construction and 

feature extraction in developing effective automated detection systems. Preprocessing techniques 

are essential for enhancing image quality and reducing noise, thus improving subsequent analysis 

accuracy. The proposed methodology incorporates an enhanced trilateral filter to reduce noise and 

an upgraded Top-bottom hat transformation to boost image contrast. 

Feature extraction plays a pivotal role in capturing relevant information for classification. 

Luminescence, representing image clarity, and gray co-occurrence matrices are used to extract 40 

features, such as entropy, contrast, and homogeneity measurements. Additionally, gray-gradient 

co-occurrence matrices provide edge information, enabling the computation of features such as 

gradient dominance and energy. 

The classification process employs a backpropagation (BP) neural network with two layers, 

consisting of 40 input neurons representing extracted features and 4 output neurons corresponding 

to cataract severity levels. The network is trained using a subset of retinal images, with training 

data accounting for 70% and validation and test data each representing 15% of the dataset. 

Training utilizes the conjugate gradient descent method, with validation data preventing 

overfitting. 

The proposed approach offers a systematic framework for automated cataract detection, 

leveraging advanced computational techniques to analyze retinal images efficiently. By 

automating the classification process, this methodology promises to enhance diagnostic accuracy, 

reducing reliance on manual assessments, and improving overall healthcare outcomes. 

A. B. Jagadale et al.  [7] Paper proposes a computer-aided system utilizing slit lamp images to 

detect cataracts at an early stage. Lens detection, segmentation, feature extraction, and 

categorization are all part of the process. Minimizing human error and inter and intra-grade 

variability is one of the main concerns. The three primary types of cataracts are nuclear, cortical, 

and post-subcapsular. 

Traditionally, ophthalmologists rely on slit lamp observation aided by the lens Opacity 

Classification System (LOCS-III) is a tool used to diagnose and detect cataracts. One popular 
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treatment option for cataract-related vision impairment is lens replacement surgery. Previous 

studies emphasize the efficacy of computer-aided discovery and grading, with accurate lens 

localization being critical for successful diagnosis. 

Lens localization is achieved using the Hough circle detection transform, leveraging the circular 

nature of the lens. Measures of statistical significance like mean, contrast, and energy are extracted 

to characterize the lens, and a support vector machine (SVM) is employed for categorization. 

The suggested method makes use of a database of slit lamp photos that it obtained from an eye 

facility, with lens detection accuracy validated using the Hough circle detection transform. 

Statistical feature extraction ensures robustness to variations in illumination sources. Features that 

have been retrieved from photos and classified into various degrees of cataract severity are used to 

train the SVM. 

Overall, this methodology emphasizes the importance of accurate lens localization and the role of 

advanced computational techniques, such as SVM, in improving cataract detection efficiency.  

While traditional methods such as slit lamp observation with retro-illumination images are 

effective, they require expert interpretation and may be subject to variability. 

Previous research has identified distinctive characteristics in retro-illumination images of 

cataracts, wherein opacities manifest as dark regions within the lens. Cortical cataracts typically 

exhibit spoke-like structures, originating from the equator and extending towards the central lens 

region, while posterior subcapsular (PSC) cataracts appear as patches closer to the central part. 

These images are captured in two modes, anterior and posterior, with the former offering sharper 

details, particularly for cortical cataracts. 

However, challenges arise due to uneven illumination, artifacts, and noise, complicating 

traditional image processing techniques such as thresholding and edge detection. To address these 

issues, researchers propose leveraging texture analysis, as cataract regions often exhibit richer 

texture compared to non-cataract regions. This paper uses local entropy to quantify texture, 

indicating the image's local roughness. 

To enhance the effectiveness of texture-based detection, X. Gao et al. [1] introduced enhanced 

texture measurement. This involves weighting the texture based on the inverse intensity of the 

image, thereby amplifying darker regions indicative of cataract opacities. By partitioning the lens 

image into central and outer regions, differentiating between cortical and PSC cataracts becomes 

feasible, as their locations and severity levels vary. 

In feature extraction, many statistics are computed to characterize the texture and improve texture 

measurements. These statistics include mean, standard deviation, skewness, and kurtosis. Linear 

discriminant analysis (LDA) is then employed to train a classifier using these features. This 

proposed methodology demonstrates promising results, getting an accuracy of 84.8% on a clinical 

database comprising a substantial number of image pairs. 

Overall, this method highlights the potential of CAD systems in cataract detection, offering 

advantages in scalability, consistency, and efficiency. By utilizing cutting-edge methods for image 

processing and machine learning algorithms, such systems show promise for both mass screening 

initiatives and assisting clinicians in grading cataracts accurately. 

 

In their pioneering research, Gao et al. [3] introduced a groundbreaking approach to automatically 

grade nuclear cataracts using slit-lamp images. Slit-lamp imaging is a cornerstone diagnostic tool 

in ophthalmology, renowned for its ability to provide high-resolution images showing the anterior 

part of the eye, including the lens. These images offer clinicians a detailed understanding of the 

structural changes associated with cataracts, facilitating accurate diagnosis and monitoring of 

disease progression. In their study, Gao et al. harness the potential of slit-lamp images as a rich 

source of data for cataract grading. Unlike traditional grading methods that often rely on manual 

assessment or predefined image features, their system integrates deep learning algorithms to 

autonomously learn discriminative features directly from these images. By using a variety of 
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datasets of slit-lamp photos to train recursive neural networks (RNN) and convolutional neural 

networks (CNN), the proposed system effectively captures subtle variations indicative of cataract 

severity. By using this novel method, cataract grading becomes more efficient and there are new 

opportunities to use modern imaging modalities in ocular diagnosis. The successful integration of 

slit-lamp imaging with deep learning techniques underscores the transformative potential of 

interdisciplinary research in advancing clinical practices and improving patient care in 

ophthalmology. 

 

3. PROPOSED MODELS 

The proposed architecture for cataract detection makes use of MobileNetV2, a convolutional 

neural network (CNN) architecture that is effective and lightweight and designed for mobile and 

embedded applications. MobileNetV2 is recognized for its depth-wise separable convolutions and 

linear bottlenecks, which enable it to uncover a balance between computational and classification 

performance. By utilizing MobileNetV2 as the backbone of the model, we make use of its capacity 

to minimize computational overhead and extract significant information from input photos, 

making it well-suited for analyzing fundus images for cataract discovery. 

MobileNetV2 is a deep learning architecture designed to facilitate efficient inference on mobile 

and embedded devices. It is a successor to the original Mobile Net, developed by Google 

researchers. MobileNetV2 builds upon the principles of its predecessor, aiming to achieve high 

accuracy while minimizing computational cost and model size. 

One key feature of MobileNetV2 is its use of inverted residual blocks. These blocks consist of a 

lightweight bottleneck layer followed by an expansion layer and a linear projection layer. This 

design helps to reduce the number of parameters and computational complexity while maintaining 

expressive power in the network. The inverted residual blocks enable MobileNetV2 to achieve 

better performance compared to traditional CNNs with similar model sizes. 

Another important aspect of MobileNetV2 is its emphasis on improving the efficiency of depth-

wise separable convolutions. Depth-wise separable convolutions split the conventional 

convolution process into distinct pointwise and depth-wise convolutions, significantly reducing 

the computational cost. MobileNetV2 introduces additional optimizations to this scheme, such as 

using a linear bottleneck between the depth-wise and pointwise convolutions, further enhancing 

efficiency without compromising accuracy. 

Furthermore, MobileNetV2 incorporates techniques like batch normalization, ReLU activations, 

and global average pooling to improve training stability and performance. These elements enhance 

the network architecture's overall efficacy and allow it to accomplish remarkable outcomes on a 

range of tasks, such as semantic segmentation, object identification, and picture classification. 

MobileNetV2 has been widely adopted in the ML (Machine Learning) community due to its 

versatility and efficiency. It is especially well-suited for implementation on resource-constrained 

devices like edge computing platforms, mobile phones, and Internet of Things devices due to its 

lightweight design.  

By providing a balance between accuracy and computational efficiency, MobileNetV2 continues 

to be a valuable tool for developers seeking to deploy deep learning models in real-world 

applications. 

In this architecture, MobileNetV2 serves as the feature extractor, processing fundus images to 

extract relevant features indicative of cataracts. The initial layers of MobileNetV2 are responsible 

for capturing low-level elements like textures and edges, gradually progressing to higher-level 

features representing more abstract patterns present in the input images. These features are crucial 

for distinguishing between fundus images with and without cataracts. 

To tailor MobileNetV2 for the cataract detection task, additional layers are introduced after the 

feature extraction stage. These layers are made up of convolutional processes designed to improve 

the model's capability to distinguish between fundus pictures with and without cataracts by further 
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honing the retrieved characteristics. By incorporating these additional convolutional layers, the 

model gains the capacity to capture subtle variations and intricate spatial patterns specific to 

cataracts, thereby improving its classification performance. 

 

 
Figure 1. MobileNet V2 based CNN Architecture 

In our proposed architecture, dropout regularization is essential for improving the model's 

resilience and capacity for generalization. Following the first dense layer with 128 neurons, a 

dropout rate of 30% is applied, meaning that during each training iteration, 30% of the neurons in 

this layer are randomly deactivated. This strategic dropout percentage is meticulously selected 

through empirical experimentation to strike a delicate balance between preventing overfitting and 

preserving essential information required for accurate classification. 

Furthermore, after the subsequent dense layers comprising 64 and 32 neurons, dropout 

percentages of 20% and 30% are applied, respectively. Through repeated experimentation targeted 

at refining the model's performance on the validation set, these dropout rates are likewise 

experimentally calculated.  

By systematically adjusting these dropout percentages, we aim to mitigate the probability of 

overfitting while ensuring that the model retains valuable features and patterns crucial for effective 

cataract classification. 

One of the key benefits of MobileNetV2-based architecture is its adaptability to varying input 

image sizes. Fundus images, obtained through different imaging devices or techniques, often come 

in different resolutions and aspect ratios. To accommodate this variability, the model accepts input 

images of fixed dimensions, typically resized to a square shape for uniformity. By resizing the 

input images to a predetermined size, such as 64x64 pixels, the model can process fundus images 

of diverse resolutions without sacrificing performance. This flexibility enhances the model's 

versatility and applicability in real-world scenarios, where fundus images may exhibit varying 

resolutions and aspect ratios. 

After the convolutional layers, global average pooling is applied to aggregate spatial information 

across the entire feature map. This pooling operation reduces the dimensionality of the features 

extracted while preserving essential information relevant to cataract detection. Subsequently, the 

final classification is carried out by introducing completely linked dense layers with dropout 

regularization. The model may learn intricate correlations between the retrieved characteristics 

and the existence or absence of cataracts in the input pictures thanks to these layers. Dropout 

regularization promotes improved generalization to unknown data by randomly deactivating 

neurons during training, preventing overfitting. 

The model's output layer, which consists of a single neuron with a sigmoid activation function, 

generates a binary classification output that indicates the probability that the input picture has a 

cataract. The model is optimized with the Adam optimizer and binary cross-entropy loss during 

training, iteratively adjusting its parameters to minimize the discrepancy between predicted and 
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ground truth cataract labels. Fine-tuning may be performed on the base MobileNetV2 layers 

during training to adapt this model to the specific characteristics of the cataract detection task. 

 

Table 1 Description of different layers of the MobileNetV2-based model 

Layer Filters Config Stride Output 

mobilenetv2_1.00_224           -         -       - (2, 2, 1280) 

conv2d_82 64 3×3, relu (1,1) (2,2,64) 

conv2d_83 64 3×3, relu (1,1) (2,2,64) 

conv2d_84 64 3×3, relu (1,1) (2,2,64) 

conv2d_85 64 3×3, relu (1,1) (2,2,64) 

global_average_pooling2          -         -        - (32,  ) 

flatten_9          -         -        - (32,  ) 

dense_24 128 relu        - (128, ) 

dropout_17          -         -        - (128, ) 

dense_25 64 relu        - (64, ) 

dropout_18          -        -        - (64, ) 

dense_26 32 relu        - (32,  ) 

dense_19          -       -        - (32,  ) 

dense_27 1 sigmoid        - (1, ) 

 

Table 2. Description of different layers of the ResNet50 based model 

Layer Filters Config Stride Output 

ResNet50(base model) N / A N / A N / A (64, 64, 3) 

Conv2D 64 (3, 3) ReLU Same (64, 64, 64) 

Dropout N / A p = 0.3 N/A (64, 64, 64) 

Conv2D 32 (3, 3) ReLU Same (64, 64, 32) 

(64, 64, 32) N / A p = 0.2 N / A (64, 64, 32) 

GlobalAveragePooling2D N / A N / A N / A (32,) 

Flatten N / A N / A N / A (32,) 

Dense 128 ReLU, 

L2(0.01) 

N / A (128,) 

Dense 64 ReLU, 

L2(0.01) 

N / A ( 64,) 

Dense 1 Sigmoid N / A ( 1, ) 
 

In this architecture, the Base model ResNet50 is followed by two convolutional layers, 

each with a dropout layer to avoid overfitting. To preserve the input's spatial dimensions, 

the convolutional layers have 64 and 32 filters, respectively, along with padding and ReLU 

activation. Dropout is implemented with 0.3 and 0.2 probability, respectively, following 

the first and second convolutional layers. After reducing the output's spatial dimensions 

using global average pooling and flattening, densely linked layers with L2 regularization 

and ReLU activation are used. The output of the last dense layer is a binary classification 

using sigmoid activation. 
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Table 3 Description of different layers of the EfficientB0 based model 

Layer Filters Configuration Output Shape 

Efficient NetB0 (base)          -               - (64, 64, 3) 

Conv2D 64 (3 * 3) ReLU, Same (64, 64, 64) 

GlobalAveragePooling2D          -               - (64,) 

Flatten          -               - (64,) 

Dense 128 ReLU, L2(0.01) (128,) 

Dropout          - p = 0.3 (128,) 

Dense 64 ReLU, L2(0.01) (64,) 

Dropout          - p = 0.2 ( 64 ,) 

Dense 1 Sigmoid (1,) 

 

 

Another design that has been suggested is an altered form of EfficientNetB0, which begins with an 

input shape of (64, 64, and 3). After applying ReLU activation and 64 3x3 filters as the first 

convolutional layer, global average pooling is used to compress spatial data into a (64,) shape. 

After that, the output is flattened, becoming a 64-size one-dimensional array. Two tightly linked 

layers are then used to lessen overfitting. The first layer has 128 neurons, ReLU activation, and L2 

regularization with a coefficient of 0.01; it is followed by dropout with a likelihood of 0.3. The 

second dense layer is composed of 64 neurons that exhibit L2 regularization and ReLU activation. 

A second dropout layer with a likelihood of 0.2 follows. 

 

4.  IMPLEMENTATION DETAILS 

 

Dataset 

Our dataset consists of 860 fundus images from Ocular Disease Recognition and Kaggle datasets 

for our dataset. Three subsets are created from these photos: 10% (86 images) are used for 

validation, 10% (6688 images) are used for training, and the remaining 10% (86 images) are used 

for testing. Fundus pictures, taken with a specialized fundus camera, show the rear eye part, 

including important components such as the macula, optic disc, retina, and blood vessels. The 

model gains the ability to recognize features and patterns in fundus pictures throughout the 

training phase by learning from the training data. To avoid overfitting and guarantee that the 

model performs well on previously unknown data, the weights of the model are normalized during 

the validation step. Finally, during testing, the model is evaluated to assess its accuracy and loss, 

crucial metrics for gauging its performance in diagnosing ocular diseases. 

 

 

Figure 2 Sample Images in the dataset 

 

In our experiment, we used Google Colab and had a strong computer setup with a Tesla T4 GPU, 

an Intel Core i9-10850K CPU, and 64GB of RAM. We built a custom CNN model using 

TensorFlow and Keras, which we adjusted with a fixed learning rate of 0.0001 using the Adam 

optimizer. We trained the model for 55 epochs, each time processing small groups of 32 images. 
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This helped our model learn better and improve its performance over time. After training, our 

model didn't just give simple predictions; it provided probabilities for different categories, which 

can be helpful for doctors in making decisions about patient care. We have also developed a user-

friendly website to assist individuals in uploading images and obtaining predictions using 

FastAPI. FastAPI is a powerful Python framework for creating APIs. Its asynchronous capabilities 

and automatic documentation generation make it a popular choice for rapid development and 

scalability. With intuitive design and seamless functionality, users can easily upload their images 

and receive accurate predictions. This platform intends to give a convenient and accessible 

solution for image analysis, enhancing user experience and facilitating informed decision-making. 

 

Figure 3 Picture of website 

  

 

5. EXPERIMENTAL RESULTS 

The experimentation results offer intricate insights into the performance of every implemented 

model, shedding light on their strengths and weaknesses in the circumstances of cataract detection. 

Beginning with the MobileNetV2-based model, it demonstrated exceptional accuracy, achieving a 

commendable training accuracy of 98.11% and a validation accuracy of 74.71%. This high 

accuracy indicates that the MobileNetV2 architecture effectively captured and learned 

discriminative features relevant to cataract classification. The MobileNetV2 model showcases the 

promising potential for robust cataract detection, benefiting from its efficient architecture and pre-

trained weights. 

 

Figure 4. Accuracy of the MobileNetv2-based Model 
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Figure 5 Loss of MobileNetv2-based Model 

 

Figure 6 Confusion matrix of MobileNetv2 based model 

Conversely, the ResNet50-based model exhibited a slightly lower training accuracy of 69% and 

displayed a validation accuracy of 59%. This model's performance suggests a better generalization 

capability compared to MobileNetV2, as indicated by the closer alignment between training and 

validation accuracies. The ResNet50 architecture, renowned for its deep residual connections, 

likely facilitated more effective feature extraction and representation, contributing to its improved 

generalization performance. Furthermore, the ResNet50 model's training loss of 0.1493 

underscores its ability to minimize classification errors, leading to robust performance in cataract 

detection tasks. 

In contrast, the EfficientNetB0-based model delivered the least satisfactory results among the 

three architectures, showcasing a training accuracy of 58% and a validation accuracy of 57%. This 

considerable performance gap between training and validation suggests significant overfitting, 

potentially attributable to the model's complexity relative to the dataset size. Despite its lower 

accuracy, the EfficientNetB0 model's training loss of 0.5681 implies a substantial effort to 

minimize classification errors during training. Nonetheless, the model's limited generalization 

capability, as evidenced by its poor performance on unseen validation data, highlights the 

importance of carefully balancing model complexity with dataset characteristics to achieve 

optimal performance in cataract detection applications. 

 

6. CONCLUSION AND FUTURE WORK 

So, we looked at the effectiveness of three different CNN designs for detecting cataracts in 
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pictures of the retinal fundus. However, MobileNetV2, which achieved remarkable training 

accuracy, appeared as the most promising design. 

ResNet50, while demonstrating balanced performance and better generalization, achieved a lower 

overall accuracy compared to MobileNetV2. EfficientNetB0, on the other hand, showcased the 

pitfalls of using a complex model on a limited dataset, suffering from significant overfitting. 

These findings suggest that MobileNetV2's efficient architecture and pre-trained weights hold 

significant promise for cataract detection. Future work should focus on mitigating overfitting in 

the MobileNetV2 model through techniques like dropout regularization or data augmentation. 

Hyperparameter optimization can further refine the model to achieve optimal performance. 

Additionally, incorporating a more diverse dataset that encompasses a wider range of image 

characteristics is crucial for enhancing the model's generalizability. By addressing these 

limitations, MobileNetV2 can be established as a robust and generalizable solution for cataract 

detection in real-world settings, potentially aiding in early diagnosis and improved patient care. 
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